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SUMMARY

This paper describes a prototype computer software system automating the design of computer
displays. The information displayed includes tables (e.g., as parts tables or diagnostic tables) and
functional diagrams.

The concept of operations for the Integrated Maintenance Information System (IMIS) requires
that all technical data be stored in a database independent of screen formatting information. For
example, the electronic form includes no information about where a box of the diagram is to be
placed, or even that some information is to be displayed as a diagram instead of a table. Hence.
this format-neutral storage representation then allows software to automatically reformat the data
for new computer screen sizes, new portables, new color capabilities, or new methods including
animation or head-mounted displays. This separation of information content from formatting also
permits better analysis to check for consistency or to merge information from multiple sources.
When there are changes, minimal human reengineering effort is required to update the information
and the displays, rosidlting in reduced costs and higher quality.

The automatic design and layout methods presented here represent a new capability. Previous
layout techniques exist but have been limited to a few preselected screen structures whose rendering
does not adapt to new data. In addition, these previous methods do not adapt to algorithmic
techniques integrated with human factor constraints to select high-quality, dependable displays.

Our approach may be termed rule-based, since each table or diagram is automatically generated
from a set of rules dictating what constitutes an acceptable rendering on the screen. The rule-based
approach makes it easy to incorporate human factors rules for guiding the selection of appropriate
displays.

The capability to build a computer system to carry out these logic-based designs has been
enabled by advances in theory and in technology including very-high-level languages, more advanced
compilers, and representation transformation tools.

The main principle used by the rule-based system is that items associated in the database.
such as a symptom-fault pair. must be given a visual association on the screen, such as occurring
in the same row of a table. Elaborations of this and related principles are presented and illustrated
in this paper.

Our rule-based prototype has been demonstrated with maintenance technical data provided by
the Air Force Human Resources Laboratory (AFHRL). This paper presents a series of tables and
functional diagrams automatically designed by the prototype computer software system. The tables
contain fault, symptom, and test data, and the functional diagrams are for an aircraft subsystem.
Paper (not electronic) versions are also produced automatically (the tables and diagrams ill this
paper were produced this way).
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I. INTRODUCTION

Recent advances in technology for greater automation in software include knowledge-based
methods for software creation and logical specification of software using very-high-level specifica-
tions (Smith, 1988), (Kotik, Rockmore, & Smith 1986). This advanced technology can be applied
to the automated generation of graphical user interface software. The key observation is display
synthesis is analogous to software synthesis.

We illustrate herein a theory for the creation of tables and diagrams. We plan to achieve
for automated display synthesis the large increase in productivity and maintainability automated
programming brings to software production and maintenance. Display or presentation specifications
are software, too and are subject to modification and in need of maintenance. Users want fast and
inexpensive turnaround to test requirements before making a larger investment.

Such automated design of graphical representations can (a) increase productivity. (b) allow
the rapid exploration of a large number of alternative display designs, and (c) be used to produce
standard display formats from unformatted data. It allows for the generation of displays for unan-
ticipated cases (i.e., a rule-based design system effectively determines what kind of displays can be
effective in communicating new information).

The significance of this technology for the Integrated Maintenance Information System /IMIS)
project is severalfold. First, the IMIS will apply the concept of storing format-neutral data in the
repository of technical data. The data are neutral with respect to display and formatting. Thus,
as new display consoles, new maintenance workstations, new screen look-and-feel standards, and
new printing standards emerge, the data can automatically be formatted to comply with these new
constraints. By driving all the display and print systems off the same neutral data. consistency is
established across the various media. As new techniques such as color, animation or virtual reality
displays are introduced, little or no change to the technical data will be required. The availability of
a low-cost display design capability allows the technical data to be freed from formatting information
so inference systems can analyze the data for consistency. quality, optimization, upgrades. and so on.
Also, technical data from multiple vendors can be merged into combined maintenance presentations
using data structure and procedure reformulation techniques.

This work differs from the conventional notion of a "screen generator." The generative theory
adapts to new types of data or display criteria because it uses the structure and contents of the
data t, guide the creation of the display. We illustrate these capabilities in detail in this paper.

Two main categories of choice are provided by the synthesizer: (a) data structure reformulation.
and (b) variation of display styles. The data reformulation steps reorganize the information directly
so the system can synthesize a greater variety of displays than is possible by a system that fits the
data within a predefined display format.

There are subsystems for generating tables and diagrams. These two subsystems share the same
graphics bounding-box model and implementation as well as many of the same design principles.



Organization of the Report

Section II describes our technical approach. Section III describes the table generator i:i more
detail and presents an annotated trace as the prototype designs a series (f tables. Section IV
describes the diagram synthesis prototype. Again, several exampcs of generated displ;ys help
illustrate the process. Section V suggests several future directions and contrasts this research with
some related work in the area. The last section offers our conclusions regarding this first phase of
work.

II. TECHNICAL APPROACH

Genecator/Selector Factoring of Theory

We are interested in automated design assistance for the generation of graphical user-interface
F-'ftware. The research strategy chosen is to divide the problem into a generator theory and a
selector theory.

A generative theory takes as input some information to be displayed graphically and generates
as output all plausible graphical ways to display that information. Such a generative theory forms
the basis for the automatic synthesis of graphical displays. The degree to which the theory can
generate all plausible displays determines the theory's flexibility and utility.

A selector theory takes as input a set of displays and places as output the displays in order of
preference (or just names one that is satisfactory). The selector theory consists of a set of criteria by
which the displays are filtered so preferred displays are separated from the many possible displays
generated. In the implementation, the selector prunes the space of possible displays proposed by
the generator.

We are following the research strategy of first pursuing the development of the generative theory
and later combining it with a selector theory. Accordingly, in this research effort we have taken
the important first step and developed the generative theory for the automated synthesis of tables
and diagrams.

Human factors determine the selector theory. For example, the applicable human factor analysis
may call for limits on the ratio of line width to character size, or on the number of functional blocks
shown in a limited space. Such criteria would be stated in the selector theory.

This division of the theory into a generator and a selector is used for theory development
and explanatory purposes. f7hus, the concept is simply that the generator produces the space of
presentations and the selector prunes this space. However, for efficiency, the implementation can be
made more efficient by incorporating the se' .,tor rules into the generator (enabling rapid pruning
of the design tree).

To limit the scope of this initial investigation into the theory, we have restricted the type
of graphical displays generated to forms of tables and diagrams (graphs). It does not include
animation, color, or solid modeling, although we see no intrinsic limitations on extending the
methodology iTto these areas.
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Analogy to Program Synthesis

Graphical screen synthesis is quite analogous to conventional program synthesis. In particular
the two notions of data structure reformulation and program optimization are directly applicable

to graphics synthesis. For example, the common program optimization that consists of pulling
constants out of a loop has a direct analogue in graphics, such as rtnoving constant expressions
from visual representations of sets or sequences and only presenting tie constant expression once
(e.g., as a heading for a column of elements).

In addition to these particular principles that carry over direct]v, the larger methodology of
program synthesis also fits graphics synthesis. One example is the use of our technology of transfor-
mations to transform internal information structures into external screen entities. Another example.
analogous to the display generator and selector discussed above and found in conventional program
synthesis, is an efficiency estimator (selector) needed to guide the heuristic search for an efficient
implementation since all possible implementations (produced by the generator) cannot be searched.
Graphics synthesis also needs an efficiency estimator-one that estimates how well the ultimate
executirn engine of the graphics, namely the human user. will be able to "execute" or use the
graphics structure to solve the problem.

Progress

We have developed the rule base necessary to synthesize programs that design displays of
relations as diagrams and tables. We have been able to test this theory by implementing a simple
prototype graphics generator proving the concept.

The problem has proved to be tractable with our methodology and we are optimistic about the
future possibilities. The theory has fulfilled our hopes in several ways: (a) the theory did indeed
turn out to be simple (after we had worked it out), (b) we were able to build upon our transforma-
tional foundation and experience in automatic programming to gain considerable leverage, (c) the
implementation of a prototype was straightforward, consisting of expressing the graphics theory as
a set of compilable transformation rules, and (d) the theory can be immedi, tely extended in several
directions, as discussed in the conclusion of this paper.

We have applied our prototype display generator to several forms of input including sets.
mappings and relations. It produced many different types of tables and diagrams. The example in
Section III shows a series of tables automatically generated from a binary relation. The examples in
Section IV show diagram layouts automatically generated from just thw connectivity information.

Since paper "displays" are also a target of this work, we have implemented a preliminary set
of rules for producing printable representations (as T&X files) of generated displays. We have also
constructed a menu-based irterface to the generator, which allows the user to select various optiorls.
enter new input, and cycle through a generation sequence. A screen dump of this interface is shown
in Figure 1. All of the diagrams and tables reproduced in this paper were generated automatically
by the sysem and used as is.
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Figure 1. Menu-Based Interface to Display Generator

Guiding Principles

This theory was inspired by the observation that it seems possible to generate displays using

only a few simple principles. One idea is to show that two items are associated to show a simple

visual association. That is. internal commonality can be communicated by visual commionality. For

example. if two objects in a database share a common property, such as occurring in the sar',,m field

of a relation, then that association (an be shown on the screen by having th- tB., -nietS sh are a

common screen property such as horizontal or vertical position.

One step further than this simple pairwise association is the notion of ordering. An orderillg
in the data can be communicated to the external world by employing some sort of visual ordering,
such as increasing the y position, intensity, or angle.

Two basic principles guido the synthesis of the display: (a) visual encoding of the semantic

role of the data structure's parts, and (b) optimization. The contents of the data belong to the

same structure because they share some common property or have a certain relationship with each
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other. The visual display should convey this information.

The display should strike a balance between useful redundancy and unnecessary clutter. Opti-
mization helps remove undesirable redundant parts of the presentation, and make the best use of
the selected visual display properties.

1. Semantic and visual similarity. A shared property of the items being displayed is shown
as some shared visual property on the screen-vertical alignment, horizontal alignment, being joined
by arcs, or table position. Prettyprinting is an example in which the items at the same depth in
the expression tree share the visual property of the same level of indentation.

The semantic properties of the data structures in our examples include membership in a set
or sequence, and fields of the same tuple. A subclass of sameness is association between items, as
defined by a mapping or a relation. It is reflected as a visual association: (a) horizontal or vertical
juxtaposition, (b) "labels" or, (c) line segments joining tile items.

2. Optimization. When displaying complex data, or data with labels, parts of the relation
or the labels may appear multiple times because they are associated with each datum. A common
subexpression removal type optimization can eliminate some of the repeated patterns. This op-
timization is analogous to standard compiler optimization techniques, (such as finite differencing.
pulling constant calculations out of loops, loop combining, etc.,) that identify and remove repeated
computations from programs.

3. Well-ordering. Often the information to be displayed is ordered (alphabetically, numeri-
cally, by region, and so on). Even if the ordering is not explicitly present in the data, it is sometimes
useful to choose an ordering principle to help structure the display. The intended use of the data
will govern the ordering for example, telephone directories ordered alphabetically by surname or
by street address. A radar display uses a radial ordering to sweep out the field of view.

Our goal is to develop a robust generator. This effort requires a very fine-grained theory: the
ability to generate all the plausible variations of graphic displays from all plausible data. The fine
granularity of the reformulation steps and the details within each display style is what guarantees
adenuate coverage of the space of possible graphic representations. Restated, we want the grain
size of the display decisions (such as whether to center or justify text, font choice, and so on)
to be fine enough to generate a wide spectrum of displays. Then some of the displays are likely
to be particularly effective for communicating a given set of information. We can characterize
such a theory as robust, not brittle. In contrast, a generator that selects displays from several
large, precanned display types cannot be gracefully extended. By allowing subtle variations to be
generated, we have the flexibility to handle new data and new types of display media.

Simple Examples

We now look at two displays for small data structures to illustrate the application of the
association and optimization principles.

An element in a complex data structure plays one or more roles in relation to the whole. For
example, the elements of a set are in the membership role with respect to the whole. Corresponding



domain and range elements from a map are in one role of associating one with the other, and another
role of being one entry from a larger map. In displaying a data structure, we choose some of these
roles to manifest visually. Some visual trait will be selected to indicate each chosen role. The
possible choices for the visual sameness are same-row, same-column, same-font, arc-plot (tables
with line segments joining related entries), and offset-plot (tables indexed by row and column
position).

Tuple

For a pair (a, b), the property shared by a and b is membership in the same tuple; that property
could be visually represented as either vertical or horizontal alignment (same-column or same-row):

a b or
b

Sequence

The increasing order of the elements in a sequence can be shown by incrementing some visual
trait (e.g., vertical or horizontal position, intensity, size, and so on) as each element is displayed.
That the elements belong to the same sequence can be shown by holding a visual trait constant for
each element.

To show a sequence, the "elements" relation is shown by holding constant one trait; the "or-
dering" relation is shown by varying another trait. For example, the vertical position can be kept
constant while the horizontal varies, shown first below, or the role of the horizontal and vertical
reversed, yielding the second display below.

For the sequence [1,2, 31:
1

123 or 2

3

Two other association possibilities for maps are shown in the extended example: (a) using line
segments to link related items, and (b) using a plot chart.

Visual Representations

In this section we consider in more detail available visual representations and how they can be
used.

To display a set of relationships adequately, we must represent every such relationship visually
and not have any other relationship implied by the display.

The visual representations considered in this paper are the following:

1. A horizontal or vertical positional association can represent a tuple, a sequence or a set.

6



2. A connecting line can represent a pair.

3. A plot chart can represent a map A x B - C.

4. A box may represent any complex object.

5. A visual attribute (e.g., color, shape, or font) may represent a pair.

Note that we consider a pair to be a special case of a tuple (a 2-tuple).

It is necessary to represent the objects themselves as well as the relationships between objects.
In this paper we always represent objects by text strings (possibly boxed).

A good display should minimize the number of times any individual object is represented. How-
ever, it is often desirable to represent a relationship redundantly. For example, in diagrams where
relationships are always represented by lines, it is desirable to represent relationships positionally as
well; and, in complex tables where sets and tuples are represented positionally, representing them
additionally by boxing can prevent an accidental positional alignment from being misinterpreted
as an additional relationship.

The Relational Language

The language to express the relational information' has the following constructs:

* {x, y,.. .}: the set consisting of x, y,...

@ (x, y, ... ): the tuple consisting of x, y,...

* jx, y,.. .J: the collection consisting of x, y....

e {f(x)Jp(x)}: the set consisting of f(x) for every x such that p(x).

9 {If(x) - g(x)lp(x)l}: the (partial) map that maps f(x) to g(x) for every x such that p(x).

* "a-string": the string a-string.

A collection is different from a set in that all the elements need to be displayed but they do not
have to be visually associated. For example, the elements of a set must be displayed consistently.
such as in a single row or column, whereas the elements of a collection may appear at any relative
position on a page or on different pages.

The following is an example specification of relational information:

1The language does not include relations as a primitive type; instead, relations are modeled as sets of tuples.



L("Symptom", {x I (x, y) in Diagnosis-Relation}),
("Fault", {y I (x, y) in Diagnosis-Rclation}),
("Bus Problems", {(x, y) I (x, y) in Diagnosis-Relation})J

Considered as a specification of information to be visually displayed, this structure can be read
as follows. Display three structures: first, a tuple with the first element (the label) Symptom, and
with the second element being the set of all x, whenever (x, y) is in the set Diagnosis-Relation;
second, a tuple with first element Fault, and with second element being the set of all y, whenever
(x, y) is in the set Diagnosis-Relation; and third, a tuple with first element Bus Problems, and with
second element being the set of all tuples (x, y), whenever (x, y) is in the set Diagnosis-Relation.

The set comprehension in the third tuple is just the set Diagnosis-Relation. This expanded
form is used to explicate the structure of the relation so it may be transformed by simple structural
transformation rules.

The value of the Diagnosis-Relation that we will use in our examples is:

Diagnosis-Relation =
{("Bad data received", 'defective board"),
("Bad data received", "bad sensor"),
("Transmission fails", "card in wrong slot"),
("Transmission falls", "defective board"),
("Bus error signal , " card in wrong slot")}

Note that this specification of Diagnosis-Relation is concrete in that it does not have any
variables in it, whereas the prior example is abstract in that it depends on the variable Diagnosis-
Relatzon. We will use these specifications in our examples in the next section.

Tables and Diagrams

The system we have implemented takes specifications of relational information in the language
presented in the previous section and displays them so as to reveal their structure. Our system
has two subsystems: (a) one for generating tables, and (b) one for generating diagrams. The
table generator works with abstract specifications, and thus produces display structures are for the
most part independent of the actual values of the variables (i.e. they are data-independent). The
diagram generator works with concrete specifications and thus produces data-dependent displays.
In particular, the diagram generator works with binary relations where all the structure is in the
data.

The table generator has an interpreter that takes an abstract specification and produces a
display with the same structure as the evaluated specification. Thus, any repetition of objects
in the evaluated specification will cause repetition in the display. If the abstract specification is
transformed to remove a redundancy, then the display derived from the transformed specification
will have that redundancy removed.

The diagram generator displays relations using links to connect the related objects. Each
object and link is only displayed once so the generator is not concerned with removing redundancy.
Instead it is concerned with layout to allow simple, short links as much as possible, and to allow
redundant use of positional adjacency to strengthen the visual association for the viewer. Indeed.
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if two associated objects are positionally adjacent, then a simple link may be drawn between them.
so these two criteria are complementary.

Thus, the table generator is primarily working on redundancy removal and has simple layout
strategies, whereas the diagram generator is primarily working on layout and need not be concerned
with redundancy removal.

III. TABLE SYNTHESIS

The table synthesizer uses three kinds of rules: (a) representation rules, (b) redundancy removal
rules, and (c) conditioning rules applied specifically to enable application of rules of the first two
kinds.

Representation Rules

In addition to the three primary kinds of visual association described in the following three
subsections, boxing is used around sets and tuples except at the top level. Boxes containing boxes
are given thicker lines than the boxes within them. This representation redundancy is sufficient to
nullify accidental positional alignments.

Positional Association

A tuple or a set may be represented by horizontal or vertical positional association. If the
parent of a tuple or set is represented by horizontal or vertical association then the opposite is
chosen. This simple rule is too restrictive in general but is sufficient for the kinds of examples
considered in this paper. The top-level choice is unconstrained so the generator will generate two
identical displays with x and y positions reversed.

For example, if the top-level of the specification

{(z, y) I(x, y) in Diagnosis-Relation}

is represented by vertical association then the tuple will be represented by horizontal association.
giving the first display in Figure 2. The second display results from the reverse choice.

We will show henceforth only one of these symmetrical pairs of displays in each case. However.
this variety is important. Sometimes one orientation will not fit on a page but its symmetrical
version will. Sometimes it is more convenient for a user to locate information by searching down a
column rather than across a row.

Connecting Line Association

A set of pairs may be represented visually by displaying the set of first elements of the represen-
tation, the set of second elements of the pairs, and a line for each pair connecting the first element
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Bus error signal card in wrong slot

Transmission fails defective board

Transmission fails card in wrong slot

Bad data received bad sensor

Bad data received defective board

Bus error signal Transmission fails Transmission fails Bad data received Bad data received

card in wrong slot defective board card in wrong slot bad sensor defective board

Figure 2. Symmetrical Displays of Relation

of the pair with the second element. This representation is the basis of the diagram generator. We
include a special case in the table generator that does not require data-specific layout (although
it may benefit from it): display the first elements vertically and next to them display the second
elements vertically with space in between them where the connecting lines are drawn. It is useful
if the set of first elements is disjoint from the set of second elements and there are not too man'
line crossings.

The rule performs the transformation

{(x, y) I p(Z, y)}

[{x I p(X, y)}, {y p(x, y)}, {(x, y) I p(x, y)}

along with annotations to specify the display methods of the components.

For example, the specification

{(x, y) I (x, y) in Diagnosis-Relation}

is transformed to

[{x I(x, y) in Diagnosis-Relation},
{y I (x, y) in Diagnosis-Relation},
{ X, y) I (z, y) in Diagnosis-Relation}j

resulting in the display of Figure 3. This figure illustrates an exception to the simple boxing strategy
described above. The set of first elements and the set of second elements are not boxed because of
the lines pointing to elements of the sets.
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Bad data received bad sensor

Transmission fails defective board

Bus error signal card in wrong slot

Figure 3. Line Display

Plot Chart

A plot chart visually represents a map m : A x B '-- C. The set A is represented vertically and
the set B horizontally (or vice versa), and placed offset so the values of m(a, b) for every a E A and
b E B can be displayed at the x position of b and the y position of a. See Figure 4 for an example.

The transformation has a similar form to that of the connecting line transformation but the
annotations specifying layout are different:

{(X, y) '-* true I p(x, y)}

L{x I p(x, y)}, {y p(x, y)}, {(x, y) - true I p(x, y)}J

For example, the specification

( (x, y) -- true (x, y) in Diagnosis-Relation I}

is transformed to

[{x I (x, y) in Diagnosis-Relation},
{y I (x, y) in Diagnosis-Relation},
{ (z, y) - true I (x, y) in Diagnosis-Relation I}J

resulting in the display of Figure 4 (with "X" being used to represent the value "true").

bad sensor defective board card in wrong slot

Bad data received X X

Transmission fails X X

Bus error signal X

Figure 4. Plot Chart Display
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Redundancy Removal Rules

There are two kinds of redundancy removal rules: (a) one removes common subexpressions by
merging, and (b) the second projects on a field of a relation to avoid repetition of that element of the
relation. We give an example of (b) following; examples of (a) will be presented in the derivations of
more complex tables below, where the motivation is clearer. Note that the programming language
option of introducing a variable to hold the value of a common subexpression is not as simple in a
visual representation and is not used in our system. Instead we perform a merging of the contexts
in which the common subexpressions appear.

The rule that projects on the first element of a binary relation can be expressed as

{(X, Y) I P(x, Y)}

{(x, {y I p(x, y)}) p(X, yl)}

For example, the specification

{ (x, y) I(x, y) in Diagnosis-Relation J}

is transformed to

{(x, {y I (x, y) in Diagnosis-Relation})

I (x, yl) in Diagnosis-Relation}

resulting in the display of Figure 5.

Bad data received defective board

bad sensor

Transmission fails card in wrong slot

defective board

Bus error signal card in wrong slot

Figure 5. Projection Display

Conditioning Rules

The conditioning rules for enabling applicability of redundancy removal rules are described in
context in the derivations of more complex tables below. The only conditioning rule for enabling
applicability of a visual representation rule that we require in this paper is the rule that converts
a set to a boolean map (its characteristic function):

{f() IPWI

{fI f(x) '-* true Ip(x) 1}
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For example, the specification

{I (X, y) I (x, y) in Diagnosis-Relation }

is transformed to

{[ (x, y) '-* true I (x, y) in Diagnosis-Relation }

which enables the plot chart representation transformation.

Generator Structure

The display synthesizer creates a number of possible displays for the input specification. The
generator performs a number of data reformulations and display style choices. For each successful
combination of choices, a display program is synthesized. Compiling and executing the display
program creates the screen or window output.

The generator actually consists of two generators acting in series. The first manipulates the
specification into a variety of "equivalent" forms. For each form, the second generator cycles through
possible choices of visual display styles. Both generators use top-down, successive refinement on
the specification and its subparts. Each generator annotates the specification with various display
directives. At the conclusion of the design generation the specification is fully annotated. Then
the code synthesizer recursively descends through the specification, synthesizing display code in
accordance with the directives.

The entirety of all the combinations of possible choices is called the search space. The specifics
of the control strategies for the generators determine in what order the space is explored. One
motive for extending our theory to include a selection component is to reduce the number of
display possibilities that must be fully explored.

Since the control structure is independent of the actual transformations, more data reformula-
tions and display styles can be incrementally added.

In the next three sections we look at derivations of more complex tables.

Bus Problem Diagnosis Table

In this example we consider the Diagnosis-Relation given above but with labels for the relation
and its domain and range. The abstract specification for this is

[("Symptom", {x I (x, y) in Diagnosis-Relation}),
("Fault", {y I (x, y) in Diagnosis-Relation }),
("Bus Problems", {(x, y) I (x, y) in Diagnosis-Relation})J.

This display corresponding to this specification is shown in Figure 6.

Within each top-level tuple, the first and second elements are associated horizontally. The
second element of each tuple is a set, the elements of which are associated vertically. The set
elements for the third top-level tuple, which are themselves tuples, have their fields associated
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Symptom Bad data received

Transmission fails

Bus error signal

Fault bad sensor

defective board

card in wrong slot

Bus Problems Bus error signal card in wrong slot

Transmission fails defective board

Transmission fails card in wrong slot

Bad data received bad sensor

Bad data received defective board

Figure 6. Diagnosis: Initial Display

horizontally. The top-level tuples are presented vertically one after the other as a default, although
the specification does not demand this.

Expression Embedding

In the display in Figure 6 the domain and range are completely redundant because their
elements all occur in the relation. To remove this redundancy the domain and range expressions
cannot simply be deleted because the association with the domain and range labels would be lost.
These associations can be maintained by replacing the elements in the relation by label-element
pairs, after which the domain and range expressions can be safely omitted along with their label
associations. The resulting specification is

("Bus Problems",
{(("Symptom", x), (" Fault", y))

I (x, y) in Diagnosis-Relation})

and the resulting display is shown in Figure 7.

This transformation has traded off redundancy in domain and range elements with the redun-
dancy of repeated label appearances. In some cases, this repetition might be useful. For example.
if a program variable was present in multiple packages, it would be important to print the package
name to be clear about which variable is being referenced. Or with some applications the repetition
might be mandated-if the heading was a formal title such as the "The Honorable". Another option
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Bus Problems

Symptom Fault

Bus error signal card in wrong slot

Symptom Fault

Transmission fails defective board

Symptom Fault

Transmission fails card in wrong slot

Symptom Fault

Bad data received bad sensor

Symptom Fault

Bad data received defective board

Figure 7. Diagnosis: After Embedding Domain and Range

is to encode the pairing using color, shape, or font. so less display space is used. This option is not
yet implemented in our system. The next section shows how the redundancy can be removed.

Constant Extraction

We wish to avoid the redundancy of the repetition of "Symptom" and "Fault" introduced by
the previous transformation. This repetition is reflected in the current specification as the constant
strings being within a repeated part of the set comprehension:

("Bus Problems",
{(("Symptom", z), ("Fault", y))

I (x, y) in Diagnosis-Relation}).

To avoid this repetition we must isolate the constants "Symptom" and "Fault" from the vari-
ables x and y. The conditioning rule for this purpose applies to the tuple

(("Symptomn", x), ('Yault", y))

producing

(("Symptom", "Fault"), (X, y)).

This transformation is a transposition if we interpret the tuple of tuples as a matrix. However.

visual representation does not guarantee this interpretation and other interpretations may not
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preserve the association of "Symptom" with x and "'Fault" with y. Therefore, the rule adds an
annotation to constrain the visual interpreter to make this association.

After this application the specification is

("Bus Problems",
{(("Symptom", "Fault"), (x, y))

I(x, y) in Diagnosis-Relation}).

With this form we may project the relation on its first element and thus avoid repetition of the
labels:

("Bus Problems",
{(("Symptom", "Fault"), {(x, y) I (x, y) in Diagnosis-Relation})

I (xi, yl) in Diagnosis-Relation}).

When Diagnosis-Relation is non-empty, this simplifies to

("Bus Problems",
{(("Symptom", "Fault":,
{(r, y) I (x, y) in Diagnosis-Relation}))}.

Displaying a singleton set is considered to be the same as displaying just the single element of
the set. Therefore, this is the same as

("Bus Problems",
(("Symptom", "Fault"),

{(x, y) I (x, y) in Diagnosis-Relation})).

The resulting display is shown in Figure 8.

Bus Problems

Symptom Fault

Bus error signal card in wrong slot

Transmission fails defective board

Transmission fails card in wrong slot

Bad data received bad sensor

Bad data received defective board

Figure 8. Diagnosis: After Removing Label Repetition
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Avoiding Repetiton Of Domain Elements

The remaining redundancies iii this display are repetitions o" the symptom and fault names.
The repetition of the symptoms is remedied by projecting on the first element of the tuple

("Bus Problems",
(('Symptom", "Fault"),

{(x, {y I (x, y) in Diagnosis-Relation)
I (x, yl) in Diagnosis-Relation)))

giving the display in Figdre 9.

Bus Problems

Symptom Fault

Bad data received defective board

bad sensor

Transmission fails card in wrong slot

defective board

Bus error signal card in wrong slot

Figure 9. Diagnosis: After Domain Projection

This display still has a repetition of fault names but there is no simple transformation that can
remove this repetition. Instead of projecting on the first element of the tuple to avoid repetition of
symptoms, we could haove projected on the second elements to avoid repetition of faults but then
we would have had repetition of symptoms. We need to return to the original specification and use
different transformations to avoid repetition of either.

Connecting Line Table

The original specification is

[('Symptom". {x I (x, y) in Diagnosis-Relation)),
("Fault", {y I (x. y) in Diagnosis-Relation}),
("Bus Problems", {(x, y) I (x, y) in Diagnosis-RelationI)J.

The connecting line representation transformation applies to the final set comprehension giving

[("Symptom". {x I (x, y) in Diagnosis-Relation}),
("Fault". {y I (z. y) in Diagnosis-Relation}),
("Bus Problems",
[x I (x, y) in Diagnosis-Relation),
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y I (x, y) in Diagnosis-Relation},
{(z, y) I (z, y) in Diagnosis-Relation}J)J.

Now a common subexpression merging rule applies. The rule detects the set of first elements
from the Diagnosis-Relation is the same set it was asked to display in association with "Symptom".
And the set of second elements has the same value as the set associated with "Fault". After
identifying these common terms, the specification is rewritten to use each only once:

("Bus Problems",
[("Symptom", {x I (x, y) in Diagnosis-Relation}),
("Fault", {y I (x, y) in Diagnosis-Relation}),
{(X, y) I (X, y) in Diagnosis-Relation}J).

The resulting display is shown in Figure 10.

Bus Problems

Symptom Fault

Bad data bad sensor
received

Transmission defective
fails board

Bus error card in
signal wrong slot

Figure 10. Diagnosis: Line Table

Plot Chart

Before the plot chart representation rule can apply, we must return to the original specification
and then apply to the finai set comprehension the conditioning rule that converts a set to a boolean
map. giving

[("Symptom", {x I (x, y) in Diagnosis-Relation}).
("Fault", {y I (x, y) in Q;.gnosis-Relation}),
("Bus Problems", {I (x, y) true I (x, y) in Diagnosis-Relation 11)1.

The plot chart rule now applies to this map expression giving

[("Symptom", {x I (x, y) in Diagnosis-Relation}),
("Fault", {y I (x, y) in Diagnosis-Relation}),
("Bus Problems",

[fx I (x, y in Diagnosis-Relation},
{y I (x, y) in Diagnosis-Relation},
J1 (x, y) ,-- true I (x, y) in Diagnosis-Relation I}J)J.
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with appropriate annotations.

The same redundancy removal rule that merged the common subexpressions in the line table
derivation also applies here, giving

("Bus Problems",
L("Symptom", {x i(x, y) in Diagnosis-Relation}),
("Fault", {y I (x, y) in Diagnosis-Relation}),
{I (x, y) I (z, y) in Diagnosis-Relation I}J).

The resulting display is shown in Figure 11.

Bus Problems

Fault

bad sensor defective card in

board wrong slot

Symptom Bad data
received X X

Transmission

fails X X

Bus error

signal X

Figure 11. Diagnosis: Plot Chart.

The entries in the map itself are given the sameness plot-chart. Referring to the map entries.
(x, y) '-, z the meaning of plot-chart is that the z range values are to be positioned in the same
column as the x value appears, and the same row as the y value. In order to do that, the system
must keep track of the row and column coordinates as it prints the domain and range sets. The
Domain-Colim-Map and Range-Row-Map are created by the transformation to hold this information.

After this transformation finishes the specification is annotated with the visual display choices.
and the auxiliary data structures have been created. Then the synthesis of the actual display code
begins. First, the code for printing the domain and range sets is synthesized. Within this code. the
x and y coordinate values for the Domain-Colm-Map and Range-Row-Map will be stored. Then
the code for the table entries is synthesized by the function Plot-Chart.

The important action taken by this synthesis step is to determine the coordinates for printing
the value of z by setting the current-colm to be the column for x from the Domain-Colm-Map, and
the current-row to be the row containing y from the Range-Row-Map.
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Example: Multicolumn Table

This example shows the generation of a table with more than two columns. The data is a 4-ary
relation:

Best-Options =
{("Replace Low Power RF Unit", 1.9, "30%", "9473A4"),

("Repair LPRF/Computer Cable", 0.4, "20%", "N/A"),
("Replace FCR Computer", 1.2, "50%", "9473A6"),

("Check LPRF/Computer Cable", 0.4, "20%", "N/A")}.

The initial description of the data to be displayed is

[("Description", { W I( W, x, y, Z) in Best-Options}),
("Hours", {x ( W, x, y, Z) in Best-Options}),
("Fail Prob", {y I (W, x, y, Z) in Best-Options}),
("Ref Des", {Z (W, x, y, Z) in Best-Options}),
("Best Options", {( W, x, y, Z) I (TV, x, y, Z) in Best-Options})J.

The same initial transformations as for the diagnosis example apply giving

("Best Options",
(("Description", "Hours", "Fail Prob", "Ref Des"),
{( W, z, y, Z) [ (W, x, y, Z) in Best-Options}))

which produces the display in Figure 12.

Best Options

Description Hours Fail Prob Ref Des

Check LPRF/Computer Cable 0.4 20% N/A

Replace FCR Computer 1.2 50% 9473A6

Repair LPRF/Computer Cable 0.4 20% N/A

Replace Low Power RF Unit 1.9 30% 9473A4

Figure 12. Multi-Column Table

Because the relation is not binary, fewer of the other transformations apply and none lead to
any other interesting displays.

Example: Complex Plot Chart

This example shows how plot charts sharing a common domain may be combined. The original
specification is
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Li"Faults", {F I (F, S, TS, R) in Fault-Info}),
("Symptoms", {S I (F, S, TS, R) in Fault-Info}),
("Tests", { TS I (F, S, TS, R) in Fault-Info}),
("Repairs", {R I (F, S, TS, R) in Fault-Info}),
("Fault Information",
{(F, S) I (F, S, TS, R) in Fault-Info},
{(F, TS) I (F, S, TS, R) in Fault-Info},
{(F, R) I (F, S, TS, R) in Fault-Info})J.

There are many displays the table generator produces for this specification. The only ones
introducing new ideas are the ones combining plot charts for the relations, so only the applications
of the common subexpression merging rule leading to the combined charts are shown.

After two of the relations have been transformed into maps and represented as plot charts, and
one of them has had its domain and range embedded in it, we have

[("Symptoms", {S I (F, S, TS, R) In Fault-Info}),
("Tests", { TS (F, S, TS, R) in Fault-Info}),
("'ault Information",
{(F, S) I (F, S, TS, R) in Fault-Info},
[{F I (F, S, TS, R) in Fault-Info},
{ TS I (F, S, TS, R) in Fault-Info},
{I (F, TS) .- true I (F, S, TS, R) in Fault-Info J}J,

[("Faults", {F I (F, S, TS, R) in Fault-Info}),
("Repairs", {R I (F, S, TS, R) in Fault-Info}),
{1 (F, R) '-- true I (F, S, TS, R) in Fault-Info I}J)J.

The range is embedded as in previous derivations but the repeated domains require a more
subtle merging so as not to lose information. The result is

L("Symptoms", {S I (F, S, TS, R) in Fault-Info}),
("Fault Information",
{(F, S) I (F, S, TS, R) in Fault-Info},
L("Faults", IF I (F, S, TS, R) in Fault-Info}),
(("Tests", { TS I (F, S, TS, R) in Fault-Info}),
("Repairs", {R I (F, S, TS, R) in Fault-Info})),

[{j (F, TS) i- true I (F, S, TS, R) in Fault-Info 1},
{I (F, R) '- true I (F, S, TS, R) in Fault-Info I}JJ)J.

After transforming the third relation into a map and representing it as a plot chart, the same

common subexpression merging process produces

("Fault Information",
(("Faults",

{F I (F, S, TS, R) in Fault-Info}),
(("Symptoms", {S I (F, S, TS, R) in Fault-Info}),
(("Tests", { TS I (F, S, TS, R) in Fault-Info}),
("Repairs", {R I (F, S, TS, R) in Fault-!nfo}))),

{I (F, S) - true I (F, S, TS, R) in Fault-Info I},
{( (F, TS) . true I (F, S, TS, R) in Fault-Info J},
{I (F, R) true I (F, S, TS, R) in Fault-hnfo I}J)).
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which gives the display in Figure 13. The simple boxing strategy used does not work very well here
because it does not recognize an incidental nesting of range labels and sets. There is a box missing
from the entire table because only three levels of boxes are allowed.

Fault Information

Symptoms Tests Repairs

RDR-595 RDR-018 9461BIT 9461AWI R-FCRCom R-LPRF RP-CabCo

Faults F018A X X X X

F018B X X X X

F018C X X X X X

Figure 13. Combined Plot Chart

IV. DIAGRAM SYNTHESIS

This section describes the prototype diagram synthesis system we have developed. The overall
goal we are pursuing is a coherent and uniform presentation of functional data. In contrast to
table generation, the principle problem is constructing a pleasing and appropriate layout of all the
diagram components and consonant drawing of any connecting arcs.

The first subsection below presents a brief overview of the issues involved in diagram synthesis
and describes our general approach. The next subsection discusses design foundations of the present
system; the following one examines in more detail the layout strategies currently implemented.
Several example diagrams synthesized by the system are included in Section IV as well.

Overview

As with table synthesis, we seek to represent functional similarities and interconnections as
visual ones. Since the diagrams we construct are presently limited to boxes and lines (the lines
represent functional or dependency-based connections), this goal primarily amounts to arranging
and rendering the diagram's components so that such similarities are immediately conveyed.

The Issues

In general, we consider the problem of producing a pleasing diagram layout as one of constraint
satisfaction, as in (Voigt & Tong, 1989) or (Braudaway, 1989). A number of issues that may be
viewed as constraints enter into the construction of a graphical representation for relational data.
Chief among these are overall organization and space management-the resulting diagram must
provide an easily assimilated presentation of the intended interrelationships, and will normally be
required to fit within the boundaries of some predetermined space. These basic goals can often
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conflict, since a natural way to emphasize functional distinction and also reduce visual complexity
is to space elements further apart.

Another way to emphasize similarity or distinction is through the use of colors, shading, and
font selection for component labels. We do not presently make heavy use of different colors and
fonts, though we do support several varieties of shading to indicate the current maintenance status
of a given component. These may be selected and modified directly through pop-up menu selections
within the user interface.

For the IMIS application, we need to synthesize diagram presentation packages that can be
executed through different graphics utilities on a variety of display hardware. Presentation on a
hand-carried portable, for instance, will impose more severe size constraints than on a large-screen
work-station. As another example, presentation on paper media will generally not (yet) involve the
use of color and may also restrict the availability of different fonts.

General Approach

We expect to receive abstract relational input, without explicit formatting or layout informa-
tion, plus high-level forms of guidance regarding desired properties of the diagram to be constructed.
Such guidance can simply be a selection and/or ordering of particular synthesis strategies to apply.
Layout constraints could also take the form of logic-based rules extracted from the semantics of the
entities being represented.

Human factor constraints provide another class of layout guidance (Ding & Mateti, 1990),
(Gunning, 1987). These can range from limits on the minimum text fonts or on the number of
different elements presented, to color selections and maximum allowed angles within a link (con-
nection) path. Target display hardware capabilities or limitations must also be taken into account.
These might be thought of as machine-factor constraints.

We construct a given layout through incremental assignment of various positioning attributes
to diagram objects. This positioning is described according to a geometric model defined within the
REFINETM knowledge base. A number of coordinate and direction transformations are supported.

Positioning of all diagram objects is expressed through relative coordinates until the entire
diagram has been constructed. Then absolute positions can be assigned, based upon the size of the
entire diagram and its placement within a surrounding screen or page coordinate system. Finally.
connecting links will be laid out to complete the diagram.

A backtracking control structure cycles through different layout possibilities, pausing to display
each completed diagram which passes all current constraints. The user can stop the generation
sequence at any time to edit the current diagram, adding or deleting components and their inter-
connections with the mouse. A itew generation sequence can then be invoked, with new constraints
and selection of different strategies to apply, if so desired.
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Design Foundations

Generation and Selection

As discussed in Section II, the diagram synthesis process may be viewed as comprising a gen-
eration and a selection part. The generator produces a series of box arrangements and connecting
line placements from which the selector chooses a subset to be presented as complete drawings. At
present, the selector makes its choices only on the basis of some simple measures of connecting link
(line) complexity and aesthetics (Ding & Mateti, 1990).

Similar to the table generation control structure outlined in Section III, the diagram generation
control structure also consists of two generators acting in series. In diagram synthesis, the first
generator combines transformations of the initial input relation and subsequent construction of a
layout plan. A given set of transformations and plan construction rules corresponds to a particular
layout strategy.

For each strategy applied, the second generator recursively steps through the layout plan, pro-
ducing a number of potential placements for each diagram component. Whenever the sequence of
placement choices leads to a plausible total arrangement, 2 derivation and positioning of line seg-
ments to represent component linkage completes the display instance. The current implementation
constructs the single "best" set of link lines for a given arrangement, again following the layout
plan and backtracking to revise earlier choices when it encounters a conflict (such as a line crossing
or an attempt to draw through a component box).

Bounding Box Abstraction

Both the diagram and table synthesis systems use a hierarchy of bounding boxes to allocate
and manage screen real estate. Each box represents a rectangular region surrounding one or more
components of a diagram (or table).

The box hierarchy forms a tree, in which a box surrounding the entire diagram corresponds
to the root and individual components form the leaves. Boxes around groups of components cor-
respond to inner branches, and permit diagram subgroups and their components to be laid out
independently. Such groupings not only enforce visual association among similar objects but help
combat combinatorial explosion as well. The dashed outlines in Figure 14 show the bounding boxes
in a simple diagram.

Currently, a bounding box hierarchy is created just after the layout plan has been constructed.
This fixed hierarchy is used for all the box placements generated from the associated layout plan.
In future versions, we envision failures to satisfy top-level size or link-path constraints will lead to
changes in the placement of some diagram components and attendant inner restructuring of the
box hierarchy.

2 For now, a plausible arrangement is just one in which no boxes overlap.

24



IIE I:

Figure 14. Bounding Box Hierarchy in a Simple Diagram.

Geometry Model

Individual diagram components and subgroups are positioned relative to each other through the
use of a two-dimensional geometry that builds upon the box abstraction. The geometry permits
a wide range of possible alignments along directed offset-vectors of arbitrary length. Figure 15
illustrates the available alignment points and offset-vectors supported.

Top Top Top
Left Center Right

Left Center Right
Center Center

Bottom Bottom Bottom
Left Center Right

Figure 15. Offset Directions and Box Alignment Points.

In the most general case, a box is positioned with respect to another box through specification
of an offset-vector, its magnitude, and a pair of alignment points, one for each box.

For example, positioning a box some positive distance d directly to the right of an already
placed box corresponds to specifying a Right offset-vector of magnitude d and the alignment pair
(Right Center, Left Center). That is, the new box will be positioned such that its left-center point
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will lie d units to the right of the right-center point of the already placed box. This is precisely
the alignment illustrated in Figure 14, in which the bounding box containing B and A has been
positioned with respect to component box C.

In the future, we expect to use the geometry model to enforce additional placement constraints
specified by the user, such as "A Left-Of C," or "A Above B." Such positioning relations will also
be derived from incorooration of flow information, classification of components as either input or
output elements, and so forth.

Initial Layout Strategies

This subsection discusses two of the initial layout strategies we have developed and imple-
mented. As introduced above, a layout strategy encompasses (a) transformations on the original
input relation, (b) construction and use of a layout plan, and (c) constraints and/or preference
orderings on the particular box placements generated within the plan. We begin with a brief de-
scription of the input transformations, and conclude with a look at how the connecting links are
constructed.

Connection-based Input Transformations

The primary input to the diagram system is simply a relation specifying the links or connections
existing between the various components. More precisely, the current input formalism is a set S of
sets s1 .... sn, where each si is a set of diagram components and

{x, y} C si for some si E S ==* connected(x, y).

For example, the input specification for the diagram in Figure 14 was just { {A, B, C} }. As a
notational convenience, the text strings labels for each component may be specified separately, as
a map, say {1 A , "alpha", B -* "beta", C - "gamma" j}.

In the absence of additional information, individual components are collected into subgroups
solely on the basis of their connectedness. We apply several transformations to the original input
relation, producing a standard form that isolates, for example, the most or least connected elements,
and collects remaining elements with similar connectivity into such subgroups. These subgroups
will eventually be placed within bounding boxes and laid out in a uniform way.

The transformed relation and its internal subgroups are also sorted in terms of the total number
of connections for each element and subgroup. Depending on the current layout strategy, these sorts
may place more connected components before less connected ones, or vice-versa.

Orthogonal "Center-Out" Strategy

The basic idea in the Center-Out strategy is to first fix a position for the most connected
component(s) and then distribute the remaining diagram elements around it. This notion is applied
recursively to the subgroups of the diagram as well. The general presentation theory at work here is
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that placing the item with the largest number of emanating links first, in the center, will generally
lead to fewer conflicts in eventual link-path construction.

For example, the input relation

{ fcr, cw}, {fcc, re, co, cw}, {rc, ss, tg, cw} },
with associated text labels map

rc -- " Radar Control Panel", fcc -*" FCC", 1
tg " Throttle Grip", re -"REO",
ss " Side Stick Controller", co - Cool "t , I

cw -" Control Wiring", fcr -" FCR" I

which represents components of a radar control subsystem, finds a number of pleasing layouts under
this strategy.

After application of the input transformations, the relation has the form

[( [cw], [ [tg, ss, rc], [co, re,fccj, [cr] )],

in which cw has been isolated as the most connected component. and the three subgroups [tg, ss, rc],

[co, re,fcc], and [fcr] have been collected for positioning around it. Accordingly, the layout plan is

[ ([[cwl], [I), ([[tg, ss, rc], [co, re, fcc], [Ifcr], [cw] )].

Here each tuple (a, b) indicates a collection of items (a) to be laid out with respect to one or more
other items (b). The central component ([cwl) may be placed arbitrarily, that is, laid out with
respect to nothing ([]). Figure 16 shows one of the layouts synthesized from this plan; dashed
outlines again show the bounding boxes for the subgroups.

All the alignments in Figure 16 are center-based (on the cw). In this layout, the directions
[Left, Right, Above] have been chosen for the respective subgroups. When the right-hand element
of a layout plan tuple is a collection of components that lie within different bounding boxes, a ghost
bounding box is automatically constructed to enclose them. This box can then be used to fix a
relative position for the left-hand collection(s) of the tuple.

The two subgroup triples have each been laid out orthogonally to the offset-vector for the
bounding box that contains them. This method is standard for both layout strategies.

Breadth-First "Linear" Strategy

The breadth-first strategy essentially tries to lay out things in a straight line. Relaxation of
positioning constraints to generate additional layouts permits a number of exceptions to this; in
general, the strategy prefers to move from left to right (or top to bottom), placing components
and subgroups as it goes. In this strategy, the sorting predicates are reversed from those described
above; the layout starts with the least connected item(s) and progresses to the more connected
ones.

For example, given the input relation

{ {w,x}, {a,w}, {, w}, {m, r,f, c}, {1,d,x,c} ,}
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Link Construction

Note that in the above diagrams, several links have been joined to indicate common connections.
When an item A is linked to each of a collection of items BI,..., B,, and each of B, and Bk
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Figure 17. Breadth-First Layout Example.

1 < j,k < n are linked to each other as well, the system will generally place all the Bi in a
bounding box BB and create a high-level link object from A to BB. A nexus point will then be
created and eventually positioned somewhere between A and BB as a target for n + I simple
links-one from A and n from the Bi.

In drawing simple links the prototype system first attempts to use a straight horizontal or ver-
tical line. If that will not work (because of interference from component boxes or other already laid
out links), it then attempts to construct a suitable link by joining a horizontal and vertical segment
as an elbow link. Figure 18 shows the elbow links drawn to a "Signal Processing" component added
to the diagram of Figure 16.

The present restriction to either orthogonal lines or single elbows means there are relatively
simple layouts and interconnections that cannot be drawn entirely with "approved" links. For
instance, removing the new "Signal Processing" component and instead connecting the "FCC" and
"Radar Control Panel" directly to each other presents such a case. In this instance, we would
probably like to find a point in the neighborhood of the added component and use it, like the nexis
points discussed above, as an intermediate target for the two elbows.
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Figure 18. Link Paths Example.

V. FURTHER WORK

The work on the table generator is now fairly mature in that it can generate at least the basic
shape of all the different kinds of tables we have seen. The diagram generator is less mature: we
need to experiment both with additional high-level structuring strategies and layout strategies in
order to generate additional interesting displays. Both subsystems require the addition of a mor-
sophisticated selector theory and better customization c.r formatting details as discuLsed below.

Performance Measures

In order to reduce the number of plausible displays, we want to develop a measure based on the
structural properties of the data that could indicate when a synthesis branch would not be worth
pursuing. The measure will be concerned with properties such as the size of domain or range of
relations. Is the mapping one-to-one or almost one-to-one? How many duplicate values are there
among domain or range sets? For example, if many values were repeated, the synthesis branch that
kept each repetition might not be worth exploring because of the amount of space each display
would require. Scrolling of diqplays offers another option for extending the usable space that may
or may not be appropriate within a given situation.
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Usage Measures

Another metric that could help select among possible displays is a model of the amount of work
it takes a user to answer a given question using a certain table. What actions are required, such as
reading across a row, looking up something in a legend, or comparing two values? Can this work
be quantified?

A similar metric could apply to the data structure itself before rendering decisions. The issues
would be how many levels deep in the data structure one needed to look, what the average or worse
case access times would be, and so on.

Usage maximization becomes a multiple objective optimization problem when more than one
question is to be answered from the same table. When does it become beneficial to duplicate the
data, perhaps in a variety of tables each suited for a particular need? When does the cost of the
redundancy outweigh the convenience?

Variety of Displays

A natural extension of this theory is to generate more styles of displays. The work by Beach
(Beach, 1985) on composing tables could be included in our rendering level. His description lan-
guage for tabular displays includes concepts of fixed or unequal width columns, headings, under-
lining, centering, or right or left justification, etc.

Examples that could be generated by additional rendering capabilities and data structure
reformulations are indexes of technical books (using a variety of fonts and underlining to ind:cate
the semantics of the page reference), prettyprinting, and tree or graph displays.

Human Factors

A quality display synthesizer should use information about human perceptual limits to prune
the space of possible displays, and later to choose certain presentations. For example. the human
factors model should know what adjacent colors or shadings can be distinguished by a human
viewer. Guidelines about the amount of white space needed to enhance readability would be useful
in determining row spacing, column widths, and the amount of text to include on one page.

J. Mackinlay (1986) summarizes the effectiveness of different visual characteristics such as
position, length, texture, area, density, shape, volume, color hue, and so on. with respect to the
perception of three classes of information. The three classes are (a) quantitative information (values
chosen from some range), (b) ordinal information (ordered values but not necessarily numeric, as
in Monday, Tuesday,...), and (c) nominal information (an unordered collection as in Argentina.
Peru, Brazil .... ). For any of the three classes, people most accurately perceive a position-based
encoding. People are not good at comparing areas: using circles of different diameters works
acceptably to encode a range of values but it ;s difficult for people to perceive the encoding fol
ordinal information unless the step size between the areas is great enough. And when used for
encoding nominal information, the difference in areas will cause people to perceive an ordering on
the items that is not meant.

31



E. R. Tufte (1983) similarly disputes the use of area as an effective representation. He cites
studies showing how poorly people compare areas. For example, people perform poorly when given
an initial circle, and when asked to choose from other circles the one containing twice the area of
the given circle. This human factors knowledge would be useful to make the display synthesizer
refrain from encoding the quantity to compared as area.

A notion of intent could also guide the visual representation choices. Excepting mandated
forms, such as accounting statements, the user wants to tell or see a story in the data.

Domain Specific Graphics

Each of the major professions has its own language, which includes graphical elements as well
as words. Within a professional area, certain applications may have their own visual vocabulary.
Some visual conventions are specific to certain domains-for example the use of red and black
for loss or gain in accounting, and replacing trailing "000" in annual reports by one statement.
"amounts are in thousands of dollars."

The domain-specific knowledge should customize the display synthesizer. The conventions of
a field might not be used for a given display but care should be taken not to violate them either.
It would mislead a reader of a financial display if the color red represented credit entries.

For some domains, standard presentations of information are used. In the project management
area, some standard forms are PERT charts, calendars, and GANTT charts. MacProject has seven
types of charts derivable from planning information. Our synthesis techniques should be able to
synthesize these charts. However, after that capability is demonstrated it will be more efficient to
save the display routine rather than recreate it each time.

Other professional areas with their own visual languages include computer-aided design/com-
puter-aided manufacturing, program development (such as SADT or Jackson methods), decision
support systems, decision trees, architecture, and each of the physical engineering fields.

Multiple Displays, Pages

Placement of figures on a page or multiple pages needs to be considered when displaying more
than one relation. If the relations are analogous, (e.g., showing the same functional information at
different points in time), then the same style of presentation should be used for each. The synthesis
process must somehow communicate among or coordinate these displays.

If a large relation requires more than a one-page display, then some information should be
repeated on each page in order to make the display locally (to the page) comprehensible. For
example, the row and column headings of a large chart are often duplicated on each page. We need
to decide what information should be duplicated and how to position it in order for the reader to
grasp the continuity of the relation.

Thus, we will need to explore the requirement for an abstract constraint solver that resolves
symbolic descriptions of the visual display properties. For example, the constraints must express the
notions of adjacency and overlapping. Another type of constraint restricts the visual representation
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choices. An existing example is the rule alternating between vertical and horizontal alignment.

In general, making a visual representation choice at one place in the data structure might rule
out some other visual choices elsewhere in the data structure.

Our transformational capabilities might be able to help fine-tune the synthesized displays for
specific needs. For example, how can a slightly oversized display be transformed to fit within a
page? What information do we choose to omit, abbreviate, move, or shrink? What transformations
could be used to help a display that doesn't work?

In summary, we are solving design problems. Constraint-based layout of displays has the same
challenges as designing offices, work areas, engines, electrical wiring, or circuit board layouts. The
techniques being developed for constraint-based programming will contribute to the design problem
definition and solution.

Interactive Graphics

There is significant literature in the proceedings of the Association of Computing Machinery
(ACM) annual SIGGRAPH conference and the ACM Transactions on Graphics journal entitled
User Interface Management Systems (Olsen, 1987). Areas of active research include specification
languages for designing interactive displays, and toolboxes for implementing them.

User interaction during the synthesis of the graphics display could help reduce the search space
by proceeding more directly to the style of display a user needs. Possible directives that could
be given by the user as she or he views a partially synthesized display include instructions to
swap axes, reorder columns, move labels, or choose an undo option. However, we doubt there is a
natural direct manipulation interface that would achieve the deep restructuring performed by our
reformulation steps. That means the user may be able to direct the search within a certain branch
of the tree but not jump across branches.

Related Work

The work most similar to ours is that of Mackinlay (1986) whose viewpoint we share to a
large extent. His work explores the use of graphical languages for encoding relational information.
The use of visual associations used in our paper can be considered to be an instance of this idea,
specialized for our particular applications. Only a few of the kinds of tables and diagrams presented
in our paper are considered by Mackinlay: offset plots, and diagrams with very simple layout.
Another difference is Mackinlay's emphasis on effectiveness of displays (our "selector") as opposed
to our emphasis on a fine-grained generator of displays.

Several researchers have developed automated layout systems for tree-structured diagrams,
(Wetherell & Shannon, 1979), (Reingold & Tilford, 1981), (Robins, 1987), and (Moser, 1990). Rel-
atively little work has been done automating the layout of general graph structures. An algorithm
for laying out Entity/Relationship diagrams is described (Tamassia, et. al., 1983). It uses a fixed
reference grid for positioning entities, performs several graph-theoretic transformations, and solves
a linear programming problem in attempting to minimize edge crossings and total edge path length.
Their layouts are more restricted than ours and do not include any subgrouping mechanisms. We
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have not as yet applied any formal minimization techniques, such as linear programming, to our
link construction methods.

Tichy and Newbery (1987) discuss a knowledge-based graphical editor with capabilities similar
to ours for adding/deleting components and edges, highlighting or shading individual components,
and so on. They also concentrate on minimization of edge crossings and are investigating mecha-
nisms for accommodating user specification of layout style, such as component grouping, bounding
box abstractions, and relative positioning. Our system already uses these mechanisms; we are also
looking into the construction of multilevel diagrams and facilities for zooming in and out between
the levels.

There are many commercial word processing, spreadsheet, and database programs with table-
displaying components. We know of none concerned with the kinds of restructuring of displays as
described in this paper.

The October 1989 IEEE Computer Special Issue on Visualization in Computing (IEEE Com-
puter, 1989) describes recent work on generating visualizations for use in computing environments.

VI. CONCLUSIONS

We have developed a generative theory for the automated synthesis of tabular and diagrammatic
displays. The prototype based on this theory demonstrates that a small number of design principles
can succeed in creating a variety of interesting and useful displays. The success of this approach
raises hopes for increasing the range of problems tackled by automated programming to include
useful and creative input/output capabilities. Continuation of this effort could help reduce costs of
porting programs to new hardware by replacing handcoding with resynthesis of the display code.

The theory can be extended. New data structure reformulations and new visual display pos-
sibilities can be added to the existing framework. Application-specific display knowledge could be
added. A theory for the selector component, and performance and usage measures will complement
the generator.

In summary, parallels exist between display synthesis and program synthesis that have not yet
been mined by our research effort; the path begun here seems to lie in a rich vein.
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